Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 14(1): 2613, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2320051

ABSTRACT

Our earlier work has shown that genomic risk for schizophrenia converges with early life complications in affecting risk for the disorder and sex-biased neurodevelopmental trajectories. Here, we identify specific genes and potential mechanisms that, in placenta, may mediate such outcomes. We performed TWAS in healthy term placentae (N = 147) to derive candidate placental causal genes that we confirmed with SMR; to search for placenta and schizophrenia-specific associations, we performed an analogous analysis in fetal brain (N = 166) and additional placenta TWAS for other disorders/traits. The analyses in the whole sample and stratifying by sex ultimately highlight 139 placenta and schizophrenia-specific risk genes, many being sex-biased; the candidate molecular mechanisms converge on the nutrient-sensing capabilities of placenta and trophoblast invasiveness. These genes also implicate the Coronavirus-pathogenesis pathway and showed increased expression in placentae from a small sample of SARS-CoV-2-positive pregnancies. Investigating placental risk genes for schizophrenia and candidate mechanisms may lead to opportunities for prevention that would not be suggested by study of the brain alone.


Subject(s)
COVID-19 , Schizophrenia , Pregnancy , Female , Humans , Placenta/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , COVID-19/metabolism , SARS-CoV-2 , Trophoblasts/metabolism
2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2319054

ABSTRACT

Vertical transmission of rubella virus (RuV) occurs at a high rate during the first trimester of pregnancy. The modes of vertical transmission including the response of trophoblasts to RuV are not well understood. Here, RuV-trophoblast interaction was studied in the BeWo trophoblast cell line. Analysis included early and late time-point kinetics of virus infection rate and the antiviral innate immune response at mRNA and protein level. BeWo characteristics were addressed through metabolic activity by extracellular flux analysis and syncytiotrophoblast formation through incubation with forskolin. We found that RuV infection of BeWo led to profuse type III interferon (IFN) production. Transfecting trophoblast cells with dsRNA analog induced an increase in the production of type I IFN-ß and type III IFNs; however, this did not occur in RuV-infected BeWo trophoblasts. IFN-ß and to a lesser extent type III IFN-λ1 were inhibitory to RuV. While no significant metabolic alteration was detected, RuV infection reduced the cell number in the monolayer culture in comparison to the mock control and resulted in detached and floating cells. Syncytia formation restricted RuV infection. The use of BeWo as a relevant cell culture model for infection of trophoblasts highlights cytopathogenicity in the absence of a type I IFN response as a pathogenic alteration by RuV.


Subject(s)
Interferon Type I , Rubella , Pregnancy , Female , Humans , Placenta/metabolism , Trophoblasts/metabolism , Rubella/metabolism , Cell Line , Interferon Type I/metabolism
3.
Stem Cells Dev ; 32(9-10): 225-236, 2023 05.
Article in English | MEDLINE | ID: covidwho-2265282

ABSTRACT

SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development. In this study, we investigated the effect of SARS-CoV-2 infection in early gestation placentae using placenta-derived human trophoblast stem cells (TSCs), a novel in vitro model, and their extravillous trophoblast (EVT) and syncytiotrophoblast (STB) derivatives. SARS-CoV-2 was able to productively replicate in TSC-derived STB and EVT, but not undifferentiated TSCs, which is consistent with the expression of SARS-CoV-2 entry host factors, ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane cellular serine protease) in these cells. In addition, both TSC-derived EVT and STB infected with SARS-CoV-2 elicited an interferon-mediated innate immune response. Combined, these results suggest that placenta-derived TSCs are a robust in vitro model to investigate the effect of SARS-CoV-2 infection in the trophoblast compartment of the early placenta and that SARS-CoV-2 infection in early gestation activates the innate immune response and inflammation pathways. Therefore, placental development could be adversely affected by early SARS-CoV-2 infection by directly infecting the developing differentiated trophoblast compartment, posing a higher risk for poor pregnancy outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Pregnancy , Female , Humans , COVID-19/metabolism , Trophoblasts/metabolism , Interferons , Placenta
4.
Elife ; 112022 06 07.
Article in English | MEDLINE | ID: covidwho-1879632

ABSTRACT

TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.


Subject(s)
Anoctamins/metabolism , COVID-19 , HIV Infections , Phospholipid Transfer Proteins/metabolism , Calcium/metabolism , Female , Humans , Placenta/metabolism , Pregnancy , RNA, Viral , SARS-CoV-2 , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Trophoblasts/metabolism
5.
Cell Stem Cell ; 29(5): 810-825.e8, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1819607

ABSTRACT

Trophoblast organoids derived from placental villi provide a 3D model system of human placental development, but access to first-trimester tissues is limited. Here, we report that trophoblast stem cells isolated from naive human pluripotent stem cells (hPSCs) can efficiently self-organize into 3D stem-cell-derived trophoblast organoids (SC-TOs) with a villous architecture similar to primary trophoblast organoids. Single-cell transcriptome analysis reveals the presence of distinct cytotrophoblast and syncytiotrophoblast clusters and a small cluster of extravillous trophoblasts, which closely correspond to trophoblast identities in the post-implantation embryo. These organoid cultures display clonal X chromosome inactivation patterns previously described in the human placenta. We further demonstrate that SC-TOs exhibit selective vulnerability to emerging pathogens (SARS-CoV-2 and Zika virus), which correlates with expression levels of their respective entry factors. The generation of trophoblast organoids from naive hPSCs provides an accessible 3D model system of the developing placenta and its susceptibility to emerging pathogens.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Zika Virus Infection , Zika Virus , Cell Differentiation , Female , Humans , Organoids , Placenta/metabolism , Placentation , Pluripotent Stem Cells/metabolism , Pregnancy , SARS-CoV-2 , Trophoblasts/metabolism , Zika Virus Infection/metabolism
6.
mSphere ; 6(2)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1186210

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a massive impact on human lives worldwide. While the airborne SARS-CoV-2 primarily affects the lungs, viremia is not uncommon. As placental trophoblasts are directly bathed in maternal blood, they are vulnerable to SARS-CoV-2. Intriguingly, the human fetus is largely spared from SARS-CoV-2 infection. We tested whether the human placenta expresses the main SARS-CoV-2 entry factors angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and furin and showed that ACE2 and TMPRSS2 are expressed in the trophoblast rather than in other placental villous cells. While furin is expressed in the main placental villous cell types, we surveyed, trophoblasts exhibit the highest expression. In line with the expression of these entry factors, we demonstrated that a SARS-CoV-2 pseudovirus could enter primary human trophoblasts. Mechanisms underlying placental defense against SARS-CoV-2 infection likely involve postentry processing, which may be germane for mitigating interventions against SARS-CoV-2.IMPORTANCE Pregnant women worldwide have been affected by COVID-19. As the virus is commonly spread to various organs via the bloodstream and because human placental trophoblasts are directly bathed in maternal blood, feto-placental infection by SARS-CoV-2 seems likely. However, despite the heightened risk to pregnant women, thus far the transmission risk of COVID-19 to the feto-placental unit seems extremely low. This has been recently attributed to a negligible expression of SARS-CoV-2 entry factors in the human placenta. We therefore sought to explore the expression of the entry factors ACE2 and TMPRSS2 in the different cell types of human placental villi. Using a combination of transcriptome sequencing (RNA-seq), real-time quantitative PCR (RT-qPCR), in situ hybridization, and immunofluorescence, we found that trophoblasts, but not the other main villous cell types, express ACE2 and TMPRSS2, with a broad expression of furin. Correspondingly, we also showed that primary human trophoblasts are permissive to entry of SARS-CoV-2 pseudovirus particles.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Furin/metabolism , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Trophoblasts/metabolism , Cells, Cultured , Female , Fetus/virology , Humans , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2/physiology , Virus Internalization
7.
Clin Ther ; 43(2): 308-318, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064961

ABSTRACT

PURPOSE: The majority of pregnancies affected by maternal coronavirus disease 2019 (COVID-19) do not result in fetal transmission. However, several studies have identified parenchymal changes in their placental tissues, suggesting a placental response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the maternal-fetal interface. Although many COVID-19 placental studies have focused on the expression of the canonical SARS-CoV-2 entry proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2, further characterization of subcellular molecules involved in viral trafficking have not yet been investigated in these tissues. Of interest are Rab proteins, a family of small GTPase proteins that direct intracellular transport between different endocytic organelles. Rab5 and Rab7 in particular have previously been implicated in HIV and cytomegalovirus invasion of placental trophoblast cells in vitro; the localization of these molecules has not been fully characterized within the human maternal-fetal interface, however, or within placental tissues from SARS-CoV-2-infected pregnancies. METHODS: Using fluorescent immunohistochemistry, Rab5 and Rab7 placental localization and comparative fluorescence intensity were explored in a cohort of placental tissues from pregnancies affected by maternal COVID-19 disease (COVID, n = 15) compared with contemporary control subjects (Control, n = 10). Fluorescence intensity was quantified by using corrected total cell fluorescence values. FINDINGS: Within placental villi, Rab5 was consistently localized in syncytiotrophoblast and cytotrophoblast cells. Rab5 had significantly higher mean (SEM) fluorescence intensity in the COVID cohort (Control, 1.96 [0.16]; COVID, 2.62 [0.09]; P = 0.0014). In contrast, although Rab7 was also localized within placental villous syncytiotrophoblast and cytotrophoblast cells, mean (SEM) Rab7 fluorescence intensity was significantly downregulated in COVID vs Control placentas (Control, 35.9 [4.1]; COVID, 20.1 [0.52]; P = 0.0001). IMPLICATIONS: This differential expression of Rab5 and Rab7 suggests that placental endocytic pathways may be altered at the maternal-fetal interface in pregnancies affected by maternal SARS-CoV-2 infection. As key molecules governing intracellular vesicle transport, including viral trafficking, Rab GTPase proteins may be of interest for ongoing studies examining placental responses to COVID-19 in pregnancy.


Subject(s)
COVID-19/metabolism , Placenta/metabolism , Pregnancy Complications, Infectious/metabolism , Trophoblasts/metabolism , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , rab7 GTP-Binding Proteins
8.
Ultrasound Obstet Gynecol ; 57(2): 248-256, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060145

ABSTRACT

OBJECTIVES: To examine the characteristics and distribution of possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target cells in the human trophectoderm (TE) and placenta. METHODS: Bioinformatics analysis was performed based on published single-cell transcriptomic datasets of early TE and first- and second-trimester human placentae. We conducted the transcriptomic analysis of 4198 early TE cells, 1260 first-trimester placental cells and 189 extravillous trophoblast cells (EVTs) from 24-week placentae (EVT_24W) using the SMART-Seq2 method. In addition, to confirm the bioinformatic results, we performed immunohistochemical staining of three first-trimester, three second-trimester and three third-trimester placentae from nine women recruited prospectively to this study. We evaluated the expression of the SARS-CoV-2-related molecules angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). RESULTS: Via bioinformatic analysis, we identified the existence of ACE2 and TMPRSS2 expression in human TE as well as in first- and second-trimester placentae. In the human TE, 54.4% of TE1 cells, 9.0% of cytotrophoblasts (CTBs), 3.2% of EVTs and 29.5% of syncytiotrophoblasts (STBs) were ACE2-positive. In addition, 90.7% of TE1 cells, 31.5% of CTBs, 22.1% of EVTs and 70.8% of STBs were TMPRSS2-positive. In placental cells, 20.4% of CTBs, 44.1% of STBs, 3.4% of EVTs from 8-week placentae (EVT_8W) and 63% of EVT_24W were ACE2-positive, while 1.6% of CTBs, 26.5% of STBs, 1.9% of EVT_8W and 20.1% of EVT_24W were TMPRSS2-positive. Pathway analysis revealed that EVT_24W cells that were positive for both ACE2 and TMPRSS2 (ACE2 + TMPRSS2-positive) were associated with morphogenesis of branching structure, extracellular matrix interaction, oxygen binding and antioxidant activity. The ACE2 + TMPRSS2-positive TE1 cells were correlated with an increased capacity for viral invasion, epithelial-cell proliferation and cell adhesion. Expression of ACE2 and TMPRSS2 was observed on immunohistochemical staining in first-, second- and third-trimester placentae. CONCLUSIONS: ACE2- and TMPRSS2-positive cells are present in the human TE and placenta in all three trimesters of pregnancy, which indicates the possibility that SARS-CoV-2 could spread via the placenta and cause intrauterine fetal infection. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Placenta/enzymology , RNA/biosynthesis , Serine Endopeptidases/biosynthesis , Trophoblasts/enzymology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/enzymology , COVID-19/virology , Female , Fetus/metabolism , Fetus/virology , Gene Expression Profiling/methods , Humans , Infectious Disease Transmission, Vertical , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/enzymology , Pregnancy Complications, Infectious/virology , Prospective Studies , RNA/genetics , RNA/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/genetics , Single-Cell Analysis , Trophoblasts/metabolism
9.
Ultrasound Obstet Gynecol ; 57(2): 242-247, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060088

ABSTRACT

OBJECTIVE: Pregnant women can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet the incidence of perinatal infection is low. We hypothesized that this could be related to low expression of the membrane receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), in the fetoplacental unit. We evaluated protein expression of ACE2 at various gestational ages in both placentae and fetal organs from pregnancies not infected with SARS-CoV-2. METHODS: In May 2020, using samples from a registered biobank, we performed immunohistochemical analysis for ACE2 in tissue samples from fetal organs and placentae from five cases of second- or third-trimester medical termination of pregnancy in healthy women (performed between 15 and 38 weeks' gestation), as well as a further two placentae, one from a 7-week spontaneous miscarriage in a non-infected woman and one from a symptomatic pregnant woman positive for SARS-CoV-2 delivered by Cesarean section at 34 weeks. Samples were paraffin-embedded and organ tissues included kidney, brain, lung, intestinal tract, heart and testis. Matching tissues (kidney, intestinal tract, lung and testis) from autopsies of four 8-year-old children were tested as controls. Tissue sections were incubated with rabbit monoclonal anti-ACE2, and protein expression of ACE2 was detected by immunohistochemistry. RESULTS: ACE2 expression was detected in fetal kidney, rectum and ileum samples from 15 weeks onwards and in the pediatric controls. It was barely detectable in fetal lung samples at 15 + 5 weeks' gestation and not detectable thereafter, and, in the pediatric controls, ACE2 was detectable only in type-2 pneumocytes. No ACE2 expression was found in the cerebral ependymal or parenchymal tissues or in cardiac tissues. ACE2 was expressed in placental syncytiotrophoblast and cytotrophoblast samples, but not in the amnion, from 7 weeks onwards. The intensity and distribution of ACE2 staining in the placenta from the symptomatic SARS-CoV-2 woman was similar to that in the non-infected placentae. CONCLUSIONS: Marked placental expression of ACE2 provides a rationale for vertical transmission at the cellular level. Absence of ACE2 expression in the fetal brain and heart is reassuring regarding the risk of congenital malformation. Clinical follow-up of infected pregnant women and their children is needed to validate these observations. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Fetus/enzymology , Placenta/enzymology , Adult , COVID-19/enzymology , COVID-19/transmission , COVID-19/virology , Case-Control Studies , Child , Female , Humans , Infectious Disease Transmission, Vertical , Male , Pregnancy , Pregnancy Complications, Infectious/enzymology , Pregnancy Complications, Infectious/virology , Proteomics/methods , SARS-CoV-2/metabolism , Trophoblasts/metabolism
10.
Placenta ; 103: 141-151, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-894163

ABSTRACT

BACKGROUND: Though a large number of pregnant females have been affected by COVID-19, there is a dearth of information on the effects of SARS-CoV-2 infection on trophoblast function. We explored in silico, the potential interactions between SARS-CoV-2 proteins and proteins involved in the key functions of placenta. METHODS: Human proteins interacting with SARS-CoV-2 proteins were identified by Gordon et al. (2020). Genes that are upregulated in trophoblast sub-types and stages were obtained by gene-expression data from NCBI-GEO and by text-mining. Genes altered in pathological states like pre-eclampsia and gestational diabetes mellitus were also identified. Genes crucial in placental functions thus identified were compared to the SARS-CoV-2 interactome for overlaps. Proteins recurring across multiple study scenarios were analyzed using text mining and network analysis for their biological functions. RESULTS: The entry receptors for SARS-CoV-2 - ACE2 and TMPRSS2 are expressed in placenta. Other proteins that interact with SARS-CoV-2 like LOX, Fibulins-2 and 5, NUP98, GDF15, RBX1, CUL3, HMOX1, PLAT, MFGE8, and MRPs are vital in placental functions like trophoblast invasion and migration, syncytium formation, differentiation, and implantation. TLE3, expressed across first trimester placental tissues and cell lines, is involved in formation of placental vasculature, and is important in SARS-CoV (2003) budding and exit from the cells by COPI vesicles. CONCLUSION: SARS-CoV-2 can potentially interact with proteins having crucial roles in the placental function. Whether these potential interactions identified in silico have effects on trophoblast functions in biological settings needs to be addressed by further in vitro and clinical studies.


Subject(s)
Computational Biology , Pregnancy Proteins/metabolism , Protein Interaction Maps , SARS-CoV-2/metabolism , Trophoblasts/physiology , COVID-19/metabolism , COVID-19/pathology , Computer Simulation , Datasets as Topic , Female , HEK293 Cells , Humans , Placenta/metabolism , Placenta/physiology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Trimester, First/metabolism , Protein Binding , Proteomics/methods , Trophoblasts/metabolism , Trophoblasts/virology , Up-Regulation
11.
Open Biol ; 10(8): 200162, 2020 08.
Article in English | MEDLINE | ID: covidwho-694802

ABSTRACT

While initially recognized as causing respiratory disease, the SARS-CoV-2 virus also affects many other organs leading to other complications. It has emerged that advanced age and obesity are risk factors for complications but questions concerning the potential effects on fetal health and successful pregnancy for those infected with SARS-CoV-2 remain largely unanswered. Here, we examine human pre-gastrulation embryos to determine the expression patterns of the genes ACE2, encoding the SARS-CoV-2 receptor, and TMPRSS2, encoding a protease that cleaves both the viral spike protein and the ACE2 receptor to facilitate infection. We show expression and co-expression of these genes in the trophoblast of the blastocyst and syncytiotrophoblast and hypoblast of the implantation stages, which develop into tissues that interact with the maternal blood supply for nutrient exchange. Expression of ACE2 and TMPRSS2 in these tissues raises the possibility for vertical transmission and indicates that further work is required to understand potential risks to implantation, placental health and fetal health that require further study.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/pathology , Embryo, Mammalian/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Pregnancy , Pregnancy Trimester, First , SARS-CoV-2 , Serine Endopeptidases/genetics , Single-Cell Analysis , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL